Factors That Influence Intention to Adopt Mobile Shopping in Marketplace

  • Dudi Anandya Faculty of Business and Economics Universitas Surabaya
  • Geraldus Grady Gavindra Faculty of Business and Economics Universitas Surabaya
  • Indarini Indarini Faculty of Business and Economics Universitas Surabaya
Keywords: Mobile Shopping, Theory of Reasoned Action, Intention


The economic industry has been affected by digitalization which has grown rapidly. This growth opens up new opportunities in industrial processes including in transaction and shopping methods. One of the growing transactions is mobile shopping. This study aims to determine the factors that can influence the intention to adopt mobile shopping on the Tokopedia application with a scope in Surabaya. The intention to adopt mobile shopping variable examined in this research is influenced by: attitude toward mobile shopping, subjective norm, self-efficacy, trust, perceived risk, and perceived cost. This study used data sources from online questionnaires and had 273 data from respondents who met the criteria. This respondent data was processed through SPSS 24 and AMOS Graphics 22 software using Structural Equation Modeling (SEM) techniques. The results of data processing show that attitude toward mobile shopping, self-efficacy, trust, perceived cost are factors that influence intention to adopt mobile shopping on the Tokopedia application in Surabaya.


Ajzen, I. (1991) ‘The theory of planned behavior’, Organizational Behavior and Human Decision Processes, 50(2), pp. 179–211. doi:10.1016/0749-5978(91)90020-t.

Ajzen, I. and Fishbein, M. (1980) Understanding attitudes and predicting social behavior. Englewood Cliffs, NJ: Prentice-Hall.

Al-Jabri, I.M. and Sohail, M.S. (2012) Mobile Banking Adoption: Application of Diffusion of Innovation Theory, 13(4), pp. 379–391.

Anil, S. et al. (2003) ‘Overcoming barriers to the successful adoption of mobile commerce in Singapore’, International Journal of Mobile Communications, 1(1/2), p. 194. doi:10.1504/ijmc.2003.002466.

Armitage, C.J. and Conner, M. (2001) ‘Efficacy of the theory of planned behaviour: A Meta-Analytic Review’, British Journal of Social Psychology, 40(4), pp. 471–499. doi:10.1348/014466601164939.

Bagozzi, R. (2007) ‘The legacy of the technology acceptance model and a proposal for a paradigm shift.’, Journal of the Association for Information Systems, 8(4), pp. 244–254. doi:10.17705/1jais.00122.

Bandura, A. (1977) ‘Self-efficacy: Toward a unifying theory of behavioral change.’, Psychological Review, 84(2), pp. 191–215. doi:10.1037/0033-295x.84.2.191.

Benbasat, I. and Barki, H. (2007) ‘Quo Vadis Tam?’, Journal of the Association for Information Systems, 8(4), pp. 211–218. doi:10.17705/1jais.00126.

Celik, H. (2016) ‘Customer online shopping anxiety within the unified theory of acceptance and Use Technology (utaut) framework’, Asia Pacific Journal of Marketing and Logistics, 28(2). doi:10.1108/apjml-05-2015-0077.

Choi, T.H. (2017) Analysing the context which affects the implementation and impact of educational reforms Insights from Hong Kong and South Korean cases. Southampton.

Chong, A.Y.-L., Chan, F.T.S. and Ooi, K.-B. (2012) ‘Predicting consumer decisions to adopt Mobile Commerce: Cross Country Empirical Examination between China and Malaysia’, Decision Support Systems, 53(1), pp. 34–43. doi:10.1016/j.dss.2011.12.001.

Dai, H. and Palvi, P.C. (2009) ‘Mobile commerce adoption in China and the United States’, ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 40(4), pp. 43–61. doi:10.1145/1644953.1644958.

Dharmmesta, B.S. (1992), “Riset tentang Minat dan Perilaku Konsumen: Sebuah Catatan dan Tantangan bagi Peneliti yang Mengacu pada ‘Theory of Reasoned Action’”. Journal of Indonesian Economy and Business, Universitas Gajah Mada

Dishaw, M.T. and Strong, D.M. (1999) ‘Extending the technology acceptance model with Task–Technology Fit Constructs’, Information & Management, 36(1), pp. 9–21. doi:10.1016/s0378-7206(98)00101-3.

Garg, P. and Joshi, R. (2018) ‘Purchase intention of “halal” brands in India: The mediating effect of attitude’, Journal of Islamic Marketing, 9(3), pp. 683–694. doi:10.1108/jima-11-2017-0125.

Gefen, D., Karahanna, E. and Straub, D.W. (2003) ‘Trust and tam in online shopping: An integrated model’, MIS Quarterly, 27(1), p. 51. doi:10.2307/30036519.

Ghazali, E.M., Mutum, D.S., Chong, J.H., Nguyen, B. (2018). “Do consumers want mobile commerce? A closer look at M-shopping and technology adoption in Malaysia”. Asia Pacific Journal of Marketing and Logistics, Vol. 30 No. 4, pp. 1064-1086. https://doi.org/10.1108/APJML-05-2017-0093

Ibrahim, M., Callaway, R. and Bell, D. (2014) ‘Optimizing instructional video for Preservice Teachers in an online technology integration course’, American Journal of Distance Education, 28(3), pp. 160–169. doi:10.1080/08923647.2014.924697.

Kemp, S. (2021). Digital in Indonesia: All the Statistics You Need in 2021. [online] DataReportal – Global Digital Insights. Available at: https://datareportal.com/reports/digital-2021-indonesia.

Khalifa, M., Cheng, S.K.N. and Shen, K.N. (2012) ‘Adoption of Mobile Commerce: A Confidence Model’, Journal of Computer Information Systems, 53(1), pp. 14–22.

Kuo, Y.-F. and Yen, S.-N. (2009) ‘Towards an understanding of the behavioral intention to use 3G mobile value-added services’, Computers in Human Behavior, 25(1), pp. 103–110. doi:10.1016/j.chb.2008.07.007.

Lase, Y. K. (2023). Alasan Masyarakat Indonesia Memilih Metode Belanja Online. [online] Goodstats. Available at: https://data.goodstats.id/statistic/yukilase/alasan-masyarakat-indonesia-memilih-metode-belanja-online-glIUw [Accessed 11 Sep. 2023].

Liébana-Cabanillas, F., Sánchez-Fernández, J. and Muñoz-Leiva, F. (2014) ‘Antecedents of the adoption of the new mobile payment systems: The moderating effect of age’, Computers in Human Behavior, 35, pp. 464–478. doi:10.1016/j.chb.2014.03.022.

Liu, D. and Li, M. (2019) ‘Exploring new factors affecting purchase intention of Mobile Commerce: Trust and Social Benefit as mediators’, International Journal of Mobile Communications, 17(1), p. 108. doi:10.1504/ijmc.2019.096519.

Lu, Y. et al. (2011) ‘Dynamics between the Trust Transfer Process and intention to use mobile payment services: A cross-environment perspective’, Information & Management, 48(8), pp. 393–403. doi:10.1016/j.im.2011.09.006.

Microsoft (2019).: Tingkat Kepercayaan Konsumen di Indonesia Terhadap Layanan Digital Hanya Mencapai 44% – Indonesia News Center. [online] Available at: https://news.microsoft.com/id-id/2019/06/26/microsoft-studi-idc-tingkat-kepercayaan-konsumen-di-indonesia-terhadap-layanan-digital-hanya-mencapai-44/ [Accessed 11 Sep. 2023].

Nassuora, A.B. (2013) ‘Understanding factors affecting the adoption of M-Commerce by consumers’, Journal of Applied Sciences, 13(6), pp. 913–918. doi:10.3923/jas.2013.913.918.

Ovčjak, B., Heričko, M. and Polančič, G. (2015) ‘Factors impacting the acceptance of Mobile Data Services – A systematic literature review’, Computers in Human Behavior, 53, pp. 24–47. doi:10.1016/j.chb.2015.06.013.

Pandey, S. and Chawla, D. (2018) ‘Exploring factors that drive adoption of various categories of M-Commerce: An emerging market study’, Global Business Review, 21(2), pp. 526–546. doi:10.1177/0972150918792146.

Pavlou, P.A. (2003) ‘Consumer acceptance of Electronic Commerce: Integrating Trust and Risk with the technology acceptance model’, International Journal of Electronic Commerce, 7(3), pp. 101–134. doi:10.1080/10864415.2003.11044275.

Pavlou, P.A. and Fygenson, M. (2006) ‘Understanding and predicting electronic commerce adoption: An extension of the theory of planned behavior’, MIS Quarterly, 30(1), p. 115. doi:10.2307/25148720.

Phong, N.D., Khoi, N.H., Le, A.N.-H. (2018). “Factors affecting mobile shopping: a Vietnamese perspective”. Journal of Asian Business and Economic Studies, Vol. 25 No. 2, pp. 186-205. https://doi.org/10.1108/JABES-05-2018-0012

Sanakulov, N. and Karjaluoto, H. (2015) ‘Consumer adoption of Mobile Technologies: A literature review’, International Journal of Mobile Communications, 13(3), p. 244. doi:10.1504/ijmc.2015.069120.

Shaw, N. (2014) ‘The mediating influence of trust in the adoption of the Mobile Wallet’, Journal of Retailing and Consumer Services, 21(4), pp. 449–459. doi:10.1016/j.jretconser.2014.03.008.

similarweb, similarweb (2023) Tokopedia.com Traffic Analytics, ranking stats & tech stack - similarweb, tokopedia.com Top Keywords by Traffic Share. Available at: https://www.similarweb.com/website/tokopedia.com/ (Accessed: 12 September 2023).

Singh, A. et al. (2018) ‘The influence of demonstration sites and field days on adoption of conservation practices’, Journal of Soil and Water Conservation, 73(3), pp. 276–283. doi:10.2489/jswc.73.3.276.

Slade, E.L. et al. (2015) ‘Modeling consumers’ adoption intentions of remote mobile payments in the United Kingdom: Extending utaut with Innovativeness, risk, and Trust’, Psychology & Marketing, 32(8), pp. 860–873. doi:10.1002/mar.20823.

Srivastava, S.C., Chandra, S. and Theng, Y.-L. (2010) ‘Evaluating the role of trust in consumer adoption of Mobile Payment Systems: An empirical analysis’, Communications of the Association for Information Systems, 27. doi:10.17705/1cais.02729.

Tarhini, A., Hone, K. and Liu, X. (2013) ‘Factors affecting students’ acceptance of e-learning environments in developing countries:a structural equation modeling approach’, International Journal of Information and Education Technology, pp. 54–59. doi:10.7763/ijiet.2013.v3.233.

Venkatesh, V. and Davis, F.D. (2000) ‘A theoretical extension of the technology acceptance model: Four longitudinal field studies’, Management Science, 46(2), pp. 186–204. doi:10.1287/mnsc.

Verhoef, P.C., Franses, P.H. and Hoekstra, J.C. (2002) ‘The effect of relational constructs on customer referrals and number of services purchased from a multiservice provider: Does age of relationship matter?’, Journal of the Academy of Marketing Science, 30(3), pp. 202–216. doi:10.1177/00970302030003002.

Wei, T.T. et al. (2009) ‘What drives Malaysian m‐commerce adoption? an empirical analysis’, Industrial Management & Data Systems, 109(3), pp. 370–388. doi:10.1108/02635570910939399.

Wu, J.-H. and Wang, S.-C. (2005) ‘What drives mobile commerce?’, Information & Management, 42(5), pp. 719–729. doi:10.1016/j.im.2004.07.001.

Yang, K. (2012) ‘Consumer technology traits in determining mobile shopping adoption: An application of the extended theory of planned behavior’, Journal of Retailing and Consumer Services, 19(5), pp. 484–491. doi:10.1016/j.jretconser.2012.06.003.

Zhang, L., Zhu, J. and Liu, Q. (2012) ‘A meta-analysis of mobile commerce adoption and the moderating effect of culture’, Computers in Human Behavior, 28(5), pp. 1902–1911. doi:10.1016/j.chb.2012.05.008.

Zhou Vincent. (2022). State of Mobile Market 2022: Spotlight on Indonesia Report | data.ai Blog. [online] Available at: https://www.data.ai/en/insights/market-data/indonesia-mobile-market-spotlight-2022/ [Accessed 12 Sep. 2023].

Zikmund, W.G. et al. (2010) Business research methods. 8th edn. Mason, OH: South-Western Cengage Learning.

How to Cite
Anandya, D., Gavindra, G. and Indarini, I. (2024) “Factors That Influence Intention to Adopt Mobile Shopping in Marketplace”, AMAR (Andalas Management Review), 7(2), pp. 37-53. doi: 10.25077/amar.7.2.37-53.2023.