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Abstract 

This paper systematically examines the literature review in the field of customer switching behavior. 
Based on the literature review, it can be concluded that customer switching behavior is a topic that has 
been widely researched, with a focus on various industries, particularly banking and 
telecommunications. Research trends in this area have shown a positive direction in recent years, and 
the amount of research being done in marketing and data science is relatively balanced. In marketing, 
correlational studies are predominant, with a focus on identifying relationships between customer 
satisfaction, price-related variables, attractiveness of alternatives, service failure, quality, and switching 
costs to switching behavior. The PPM model is also gaining popularity as an important development 
for switching behavior because it considers both push and pull factors. Data science research has shown 
promising results in predicting customer switching behavior, with each research paper achieving good 
predictive accuracy. However, research gaps spanning the fields of marketing and data science need to 
be addressed to provide a comprehensive understanding of the drivers of customer switching behavior. 
Overall, the literature review shows that customer switching behavior is an important concern for 
businesses, and further research in this area is essential to gain a better understanding of customer 
behavior and develop effective strategies to retain customers. 

Keyword:  customer switching, marketing, data science 

1. INTRODUCTION 
The business landscape nowadays is occupied by an extensive number of competitors. 

The advancement of technology, as well as the decreasing capital needed to open a new 
business, has offered customers more choices. More and more customers have more options 
and flexibility to fulfil their needs and want. On the one hand, technology enables businesses 
to reach more customers by targeting marketing practices with more efficient spending. 
However, on the other hand, the use of technology in the industry also threatens current 
customers because they are bombarded with competitors’ deals. This situation of the changing 
business landscape has prompted managers to find new strategies to keep their customers. 
Losing customers is perceived as a severe drawback to future financial and potential earnings 
(Sathish et al., 2011 in Vyas and Raitani, 2014). From a business perspective, retaining current 
customers is more valuable economically than attracting new customers. It is because 
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customer acquisition costs exceed customer retention (Kotler, Bowen and Makens, 2009). It is 
known that the cost of customers acquisition could reach five times more than retaining the 
current (Mittal and Lassar, 1998 in (Vyas and Raitani, 2014). New customer acquisition needs 
advertising effort, promotional programmes, and a sales force, and it needs time to make them 
a profitable business (Athanassopoulos et al., 2001 in (Vyas and Raitani, 2014). For example, 
start-up businesses tend to give free service charges or significant vouchers to persuade 
customers to sign up as their users. Moreover, loyal customers are potentially giving more 
profit and are eager to promote the products to other (Ganesh, Arnold and Reynolds, 2000). 
Hence, business needs to understand the drivers of customer switching behaviour 
comprehensively to keep their competitiveness among competitors.  

Researchers have paid close attention to customer switching behaviour for decades 
because of its significance to business performance. The benefits of customer retention can be 
defined into six customer behaviour intentions which are; resistance to counter persuasion, 
resistance to adverse expert opinion, having the patience to wait in short supply situations, 
willingness to pay a premium price, and willingness to recommend the products to their peers 
(Narayandas, 1998). Because of these benefits, it is reasonable that business practitioners are 
eager to retain their customers in the long term and reduce their switching behaviour.  

Marketing and data science address customer switch behaviour by conducting 
different types of research trends. In marketing, research on customer switching behaviour 
primarily uses theoretical background, hypothesises building, and collects primary data by 
surveying, interviews, or experiments. On the other hand, computer science research puts less 
part on theoretical background and focuses on creating machine learning models from 
secondary data such as customer demography, customer activities, and customer reviews. 
The main goal of each field is also different. Marketing papers try to understand the drivers 
or variables that affect customer switches, while in data science, the priority is to create 
machine learning models with better prediction models by developing and comparing 
different approaches. 

Marketing uses the term customer switch (Hussain et al., 2022; Nguyen, McClelland 
and Thuan, 2022; Lin and Huang, 2023) and customer defection (Dawes, 2004; Santonen, 2007; 
Sands et al., 2020), while in data science technical paper commonly use customer churn 
(Ahmad, Jafar and Aljoumaa, 2019; Amin et al., 2019; Vo et al., 2021). By definition, customer 
switch is customers' potential or actual behaviour to change or replace the current service 
provider with its competitors (Han, Kim and Hyun, 2011). Page, Pitt and Berthon (1996) stated 
that defection happens when customers stop using the product because they do not need it 
anymore or move to other providers. In addition, customer churn refers to the degree of 
product usage activity falling below the threshold or reaching zero consumption (Glady, 
Baesens and Croux, 2009). Even though there are different terminologies in marketing and 
data science, it refers to the same thing. 

It is evident that each field has its own focuses and aims when researching customer 
switching behaviour. However, each area has its limitation in addressing the issue. The 
marketing field's strength is in understanding latent variables that drive churn and, at the 
same time, assessing the psychological aspect of customers while deciding to stop using the 
business product. But on practical levels, implementing the findings might be challenging 
since not all managers can access the practical aspect of latent variables. Data science research 
firmly addresses the churn phenomena based on a data-driven approach. It uses past data 
generated by the business or customers and generates future predictions on it. On a practical 
level, it is very implementable to customer data providers. However, the result is hardly 
generalised because companies might have different customer characteristics based on their 
target market and product categories. 
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2. METHODOLOGY 
This literature review searched covered articles from the period from 1995 to 2023.  To 

identify the relevant article, this study identified method referred to database 
recommendations from Evanschitzky et al., (2012), which are Emerald, ScienceDirect, 
Proquest(ABI/INFORM), and EBSCO. The selected database covered a wide range of 
empirical and conceptual papers from any discipline, including business, marketing, 
operations, information system, dan computer science. From this database, 249 articles were 
obtained based on keyword searches “switching behaviour”, “switching intention”, customer 
switching behaviour”, “customer defection”, and “customer churn”. The article selection is 
based on the most relevant page-per-page database and is carefully read by the researcher. 

This paper not only investigates the paper from a specific industry but also attempts 
to cover a wide range of industries, from banks, telecommunication, hotel, and software. The 
first selected paper collection is diverse from each database. The study collected most of the 
articles from Sciencedirect (150), followed by Proquest (94) and Emerald (40). EBSCO shows 
the most miniature selected paper, which is 34 papers. Thus, the initial total number of 
collected papers is 318. The documents were stored in Zotero, the open-source reference 
management software to collect, manage and cite research-related materials. Zotero 
integration with web browsers automatically saves metadata such as titles, authors, abstracts, 
publishers, and PDFs in a cloud server synced with computer storage. After comparing 
double collections between four databases, 69 papers were excluded. The final number of 
selected documents is 249 articles. Then, this literature review stored the information in the 
data collection sheet. Primary data field used for journal classification; title, publication year, 
industry, customer switching behaviour drivers, country, classical hypothesis, method, 
accuracy, and sample/data size. 

3. RESULTS AND DISCUSSION 
The oldest research on customer switching behaviour found is (Keaveney, 1995a) 

which 5147 papers have cited. This paper defines seven drivers of switching behaviour: 
pricing, inconvenience, core service failure, service encounter failure, competition, ethical 
problems, and involuntary switching. Her research focused on multiple service industries, 
becoming one of the primary references for this topic. 
 

  
[1] 

 
[2] 

Figure 1. Article quantity in data science [1] and marketing [2] fields 

The first appearance of research in customer switching behaviour in data science 
started in 2004, almost a decade after marketing in 1995. The research interest in data science 
keeps the positive trends with heavy fluctuation between 2013-2019. Then, the quantity 
increased intensively in 2020-2022. In marketing, the direction is quite similar, but it is clearly 
shown that the constant fluctuation over more than twenty years. Between 1995 and 2023, the 
paper produced in both fields was relatively equal. The marketing papers have 134 articles, 
while data science has 115.  
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Figure 2. Research coverage based on Industry 

Figure 2 shows that financial services and telecommunications are the most 
investigated industries by researchers. While in financial services, marketing publication is 
more than double of data science research (44 vs 20). However, in Telecommunication, data 
science articles exceed marketing (58 vs 40). The interest of researchers in these two fields 
might be because of the industry's market value or the data's availability. For example, Lannes 
and Stratton (2006) in (Clemes, Gan and Zhang, 2010) mention that there was a potential 
customer switch from the domestic bank in China to foreign competitors that would lead to 
losing nearly 1.8 trillion USD. Moreover, data-driven research in data science requires a vast 
amount of customer data. Brockett et al. (2008) used more than 100 attributes of bank customer 
data, and Landsman and Nitzan (2020) used nearly millions of customer records to predict 
customer churn in the telecommunication industry. The exact reasons go to retail and digital 
business. The other popular sectors are retail (36), media (17), digital, and utilities (10). 
 

 
Figure 3. Research coverage based on country 
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Based on geographical area, the research is spread across 53 countries worldwide. 
Figure 3 shows that USA and China are the top countries where the research sample was 
taken. USA research accounts for 26 articles while China 22. However, several papers collected 
sample or data set in multiple countries or regions. Maldonado, López and Vairetti (2020) 
conducted research in North America and East Asia region, while (Buckinx and Van den Poel, 
2005; De Bock and Poel, 2011; Coussement, Lessmann and Verstraeten, 2017; De Caigny, 
Coussement and De Bock, 2018; Postigo-Boix and Melús-Moreno, 2018), for instance, gathered 
their data set across Europe. It is also noticeable that research on multiple countries is 
commonly conducted in data science. It is because of the nature of the study that collected 
secondary data such as customer demography and behaviour activity is easier than primary 
data by survey or interview. 
 

 
Figure 4. Percentage of research type 

DS: Data science, MC: Marketing-Correlational, ME: Marketing-Exploratory, MD: Marketing-Descriptive 

This literature review divides the research into two types: data-driven and theoretical-
driven. Data-driven papers mostly come from data science publishers while theoretical-
driven papers originate in the marketing or business fields. The marketing paper was then 
categorised into three groups based on previous practice by Cooper and Schindler (2014) in 
(Chuang and Tai, 2016); exploratory, descriptive and correlational. 

Marketing research mostly focuses on correlational studies that investigate the effect 
of independent variables on dependent variables. It discusses the relation of the constructs in 
a particular context, such as the augmented reality (Nugroho and Wang, 2023), contractual-
based business (Wirtz et al., 2014a), or region and industry (Chigwende and Govender, 2020). 
Most studies used correlational analysis such as a structural equation model or regression 
analysis such as Wirtz et al. (2014b). Other research types exploratory and descriptive analysis 
contribute a limited number of research, 20 and 16, respectively. Exploratory research pursues 
new discoveries on undeveloped theories and research areas or tries to advance developed 
constructs to obtain new ideas or hypothesis (Swedberg, 2020). The research on micro failures 
by Sands et al. (2020) is a good example of it where it extends the concept of service failure 
and coins a novel driver of customer switching behaviour. This type of research is also 
typically conducted in a qualitative approach like Lees, Garland and Wright (2007), who 
tested the effect of utility maximisation,  expectation disconfirmation and stochastic on the 
banking industry. On the other hand, descriptive analysis is a type of study that tries to 
answer the question of what rather than how or why some phenomenon happens (Nassaji, 
2015). For example, research by Williams, Khan and Naumann (2011) surveyed customers' 
attitude about downsizing events in Fortune 100 companies. 

In data science, the research is only grouped into one type. Most papers in this research 
attempt to discover new algorithms based on data analytics methods to predict customer 
churn in particular industries. In addition, the published article also investigates the best 
approach to processing data. For example, Burez and Van den Poel (2009) address the major 
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problem in data processing in this research area: class balance. Research on customer 
switching behaviour that utilised a data-driven approach commonly faced a huge difference 
in data between stayers and churners. It impacts the training and test data set. Moreover, the 
majority of data used are structured data such as the demography (Kim, Jun and Lee, 2014), 
call details (Huang, Buckley and Kechadi, 2010), or previous behaviour (Zhang et al., 2012). 
However, unstructured data such as text is also utilised (Pustokhina et al., 2021). The 
prediction accuracy is also satisfactory. The highest accuracy rate from the developed model 
is 99.35% with the machine learning algorithm random forest. The average accuracy level of 
collected research is 81.46% which is desirable. 

Researchers found six major drivers as predictors of customer switching behaviour. 
They are satisfaction/dissatisfaction, price, switching cost, alternatives and competitors, 
quality, and service failure as described below. 

Table 1 
Prominent Predictors of Customer Switching Behaviour 

Predictors Original 
hypothesis 

Q Definition 

Satisfaction/dissatisfaction Negative/positive 38 
Overall evaluation of purchase experience 
with product or services that brings 
pleasure (Quoquab et al., 2018) 

Price Negative 38 

Price is a value of money that customer 
pay to get products or services. Price in 
customer switching behaviour is also 
related to high price, price increase, unfair 
pricing (Keaveney, 1995b). 

Switching cost Negative 38 

Perception of cost that customer associate 
when switch form one product to others 
(Quoquab et al., 2018) and it can be in the 
form of monetary and non monetary 
(Wirtz et al., 2014b). 

Alternatives & competitors Positive 36 The availability of product substitution 
from competitors (Pick and Eisend, 2014). 

Quality Negative 31 

The perception of product level of 
goodness, or a positive values that 
customer perceived after overall 
evaluation of a product (Pick and Eisend, 
2014) 

Service failure Positive 15 

Service failure happens when the 
customers encounter with some employees 
attitude or behaviour such as uncaring, 
unpolite, unresponsiveness via personal 
interaction (Keaveney, 1995b) 

 
Despite above defined variables, this paper also notices that Push-Pull Mooring has 

been used frequently in nine research such as Chou et al. (2016). The model initially explained 
the migration process coined by Moon (1995) and Lee, Lee and Feick (2001). It consists of pull 
factors, which are positive factors that attract people, and push factors that drive people away. 
In addition, it also incorporates personal, social, or situational variables called the mooring 
factors (Bansal, Taylor and James, 2005). 
 
4. CONCLUSION AND IMPLICATIONS  

This literature review addresses the research on customer switching behaviour in 
various industries. It also tries synthesising the drivers of customer switch in marketing and 
data science fields. By examining an article in a popular scientific journal database, this 
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research attempts to discover the main predictors for customer switching behaviour and to 
see the research gap that covers both marketing and data science fields. 

Research on customer switching behaviour is mature, from conceptual papers to 
empirical studies. It also covers various industries, with most research focusing on solving the 
problems of banks and telecommunication. Even though the research interest started in 1995, 
intense investigation leap in 2011. The trend then fluctuated for around eight years before it 
rebounded and showed a positive direction again in 2019. The number of research is relatively 
balanced between data science and marketing. The marketing field is dominated by 
correlational papers such as the relationship between satisfaction, price-related variables, 
alternative attractiveness, service failure, quality, and switching cost to customer switch 
behaviour. The research in banks and telecommunication also gets enormous attention. In 
addition, the researcher also notices that the PPM model is quite popular as an important 
development to switching behaviour as it comprises both push and pull factors. Data science 
research showed a good predicting result in each research paper. 

Although this paper has collected 249 empirical research, it has several limitations. 
First, it has not investigated the statistical analysis of each variable. The correlation between a 
dependent variable and its drivers could be analysed using effect size. The effect size 
represents the strength of the relationship between variables or groups. In this paper, it refers 
to the correlation between customer switches and their predictors (e.g. satisfaction, 
dissatisfaction, price, loyalty, and alternatives). A mean or total effect size of each variable 
means an average effect on the dependent variables. By determining the total effect size for 
each driver, the research would open the possibility for a detailed analysis of customer switch 
behaviour. 

Second, this research has not grouped the paper based on sample characteristics. 
Sample homogeneity will lead to a better understanding of how certain groups of unit analysis 
react as they proceed in customer switching behaviour. It might affect the mean of the effect 
size of each variable. The fixed effect size model assumes that one true effect size comes from 
all the research sample data and any different results from sampling error. While random 
effect size accepts that there might be differences, high or low effect size is because of its 
heterogeneity (Dettori, Norvell and Chapman, 2022). This could happen because of the variety 
of this sample or the research interventions. For instance, age or generation sampling in 
customer switching behaviour might produce different levels of effect size (Dettori, Norvell 
and Chapman, 2022). Others, the difference in social-economic status or level of income makes 
sample demographics aspect could give the significant difference to the effect of customer 
switch behaviour drivers. 

Third, these papers do not elaborate more on experimental design papers; Rockmann 
and Northcraft (2008), Wiebach and Hildebrandt (2012), Du et al. (2020). The practical design 
papers usually consist of a basic understanding of the customer switching process with a 
particular set environment. It enables the researchers to manipulate the independent variables 
in the controlled environment to clearly show the correlation between independent and 
dependent variables with limited external interventions. Due to the limited research on 
customer switching behaviour, this paper does not segment this research process into a 
specific analysis. Moreover, the collected experimental design papers also vary regarding 
research focuses. 

Forth, even though this paper has followed the first paper collection method 
conducted by (Evanschitzky et al., 2012), this study does not employ the other following 
sources; manually referencing the prominent paper that had collected the resource for analysis 
before, such as Keaveney (1995), manually search issue by issue in the world-leading 
marketing articles, contacting leading researchers for both conceptual and empirical research 
to ask for a paper suggestion, publish a request for identification process assistance in 
marketing academic list server (ELMAR), and manually reference relevant studies to get more 
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article from their references. Fifth, the bias between behaviour and intention might occur 
because this paper collects all relevant articles on switching behaviour and switching 
intention. In marketing, this term refers to different meanings and might differ in the actual 
business environment (Hino, 2017). Sixth, the search on data-driven or practical papers with 
the keyword ‘customer churn’ resulted in an extensive paper result. This broad result caused 
overwhelming articles, and the investigation stopped in Emerald and ScienceDirect 
databases. Lastly, data-driven research tends to use a massive number of drivers (data 
attributes). It deterred this study from investigating the attributes one by one instead of 
categorising them based on their characteristics.  

Future research could incorporate the following suggestions. First, employ statistics 
analytics to determine the total effect size for each driver in a correlational study. It will allow 
the researchers to choose which drivers have the highest correlation with customer switching 
behaviour and how it is different from one industry or sample characteristics. Moreover, it 
could open more insight into the trends of correlation results in their research fields. Seconds, 
research on experiments could be investigated more as there are still limited studies in this 
research design. Third, for selected papers in the data-driven category, the following research 
could compare the accuracy and performance of each proposed model and algorithm to see 
the most performed one. Lastly, some studies use more than a hundred attributes in their data 
set, so they cannot be published directly in the article. Thus, it is better to contact the author 
to ask for more specific attributes used in their research. 
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